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We suggest a new technique for the numerical computation of the local residual
of nonlinear hyperbolic conservation laws. This techniques relies on a discrete reg-
ularization of the numerical data.c© 2001 Academic Press

1. INTRODUCTION

Dynamic adaptivity is a very efficient acceleration technique for the numerical solution
of nonlinear hyperbolic conservation laws. Recent numerical investigations have shown that
adaptivity is able to speed up computations considerably even when fast-moving phenonema
dominate [5].

An important question in implementing this technique is what the criterion should be
for the refinement or coarsening of control volumes. For many linear equations there are
so-calleda posteriori error estimatorsavailable, which allow the control of the local error.

Error control is concerned with the control of the quantity

eh := uh − u,

whereu is the exact solution of a problemLu = 0 anduh denotes a numerical solution. The
quantityh refers to a typical length scale in the grid employed for the numerical method.
If the operatorL is linear, thenLeh = Luh − Lu = Luh =: rh, which connects the error
with the computableresidual rh. If additionallyL is invertible we immediately get control
on the error by means of the residual through

eh = L−1rh.

Several authors therefore have employed the residual in their constructions of a posteri-
ori refinement indicators; see for example [7–9]. For nonlinear conservation laws, things
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are more complicated. Error estimators exist only for very special cases [13]. Houston,
McKenzie, Süli, and Warnecke [6] were the first to provide reliable and efficient a poste-
riori error indicators for general Petrov–Galerkin methods for Friedrichs systems. In [10]
the authors carried over this theory to finite volume approximations of the Euler equations
of gas dynamics via a process of symmetrization and linearization. However, reliable and
efficient a posteriori error indicators for general nonlinear hyperbolic systems of equations
are still not available. Because of this, purely heuristic functionals are often used. A more
mathematically based approach is to use thelocal residualas a refinement indicator. An
open question is how to make an efficient and accurate numerical approximation of the resid-
ual. One reason for this problem lies in the mathematically difficult structure of the ansatz
space.

In this paper, we suggest a numerically efficient technique for the approximation of the
local residual. Our approach relies on a regularization of the numerical data, which does
not destroy the accuracy. The obtained regularity of the data enables us to employ standard
techniques of analysis for the approximation of the local residual.

2. CONSERVATION LAWS

We consider a system ofm conservation laws on a physical domainÄ ⊂ Rd. For a
vector-valued, suitably smooth function

u :Ä→ Rm

a (steady) conservation law is defined through aflux tensorF = (f1, . . . , fd) : D ⊂ Rm→
Rm×d by

div F(u) =
m∑

j=1

∂x j f j (u) = 0, (1)

where thef i are theflux functions. In this paper, we will generally assume thatf i ∈
[C2(D;Rm)]d. Since physically relevant solutions of conservation laws are known to ex-
hibit discontinuities, we defineweak solutionsof the conservation law (1). A function
u ∈ [L∞(Ä)]m is aweak solutionof (1) iff the equation∮

∂σ

F(u)⊗ n ds= 0

holds on every bounded set (control volume)σ ⊂ Rd, where

F⊗ n := (f1 · n1+ · · · + fd · nd)

andn denotes the unit outer normal vector at∂σ .
We are particularly interested in the solution of the Euler equations of gas dynamics

governing inviscid, compressible, steady flow. These equations describe the conservation
of mass, momentum, and specific total energy; therefore we have the conserved quantities

u := (ρ, ρv, ρE)T : Ä→ Rm,
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m= d+ 2, whereρ is the density,v is the velocity, andρE is the specific total energy. The
flux functions have the form

f i (u) := (ρvi , ρv1vi + δi
1 p, . . . , ρvdvi + δi

d p, ρHvi
)T
, i = 1, . . . ,d,

whereH = E + p
ρ

is thetotal enthalpyandδ`k denotes the Kronecker delta. Since we have
2+ d equations for 3+ d unknowns we have to introduce an additional equation of state
to close the system. In the case of dry air considered as an ideal gas, the equation of state
reads as

p = (κ − 1)ρ

(
E − |v|

2

2

)
,

whereκ = 1.4 denotes the ratio of specific heats.

3. THE FINITE VOLUME METHOD

We give only a short overview of the class of numerical schemes which we employ.
Starting from the definition of weak solutions∮

∂σi

F(u)⊗ n ds= 0,

we takeσi to be the boxes (dual grid) of a triangulation. The boundary of each box consists
of straight line segments connecting the edge midpoints of edges emanating from node
i with the barycentres of the triangles having nodei in common; see Fig. 1. Adding an
auxiliary time derivative (either to drive to the steady state or to compute unsteady flow)
and denoting the indices of neighbouring boxes ofσi byN (i ) we get

d

dt

∫
σi

u dx = −
∮
∂σi

F(u)⊗ n ds= −
∑

j∈N (i )

2∑
k=1

∫
ιki j

F(u)⊗ nk
i j ds.

Denoting byu := 1
|σi |
∫
σi

u dx the average ofu overσi , employing a Gaussian quadrature
rule withnG points at one segment and introducing an approximate Riemann solverH then

FIG. 1. Boundary of two boxes.
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leads to

d

dt
Ūi (t) = − 1

|σi |
∑

j∈N (i )

2∑
k=1

∣∣l k
i j

∣∣
2

nG∑
ν=1

ωνH
(
Ui
(
xk

i j (sν), t
)
,U j

(
xk

i j (sν), t
); nk

i j

)
.

Here,Ui is a recovery polynomial onσi andxk
i j (sν) denote points onl k

i j with respect to a
parametrisation ofl k

i j with s∈ [−1, 1].
The recovery polynomials are computed in a weighted essentially nonoscillatory manner

as described in [1]. With each control volume we associate a stencil containing as many
neighbouring control volumes as are necessary for polynomial recovery of a fixed degree.
Then a recovery polynomialpk

i is computed on each stencilk for each conservative variable,
and its oscillation behaviour is measured by means of an oscillation indicator, in our case

OI
(

pk
i

)
:= ∥∥∇ pk

i

∥∥
L2(σi )

.

According to the oscillation indicator, a weightωk
i is defined for thek th recovery polyno-

mial onσi so thatωk
i is large if OI(pk

i ) is small and vice versa. Additionally, we require∑
k ω

k
i = 1. For details concerning the construction of the weights see [1]. The final recovery

polynomial onσi is then defined as

Ui :=
∑

k

ωk
i pk

i

for each of the conservative variables. The resulting schemes for linear and quadratic recov-
ery polynomials are robust, accurate codes which show fairly good convergence behaviour
to the steady state. Time-stepping is achieved by means of a TVB–Runge–Kutta scheme.

4. RESIDUAL ESTIMATORS

As we mentioned in the Introduction, we are going to use the residual as an a posteriori
error indicator. Let us first summarize some basic facts about this approach.

Ideally, an error indicator should neither underestimate nor overestimate the “true error”
eh := u− uh. In the literature, the first requirement is often referred to asreliability and
the second one asefficiency. By now, reliable error estimates (for nonlinear equations) are
available only for scalar equations (see 17). These error estimates, while very interesting,
are by no means efficient. In contrast, the efficiency of a residual estimator regarded as an
error indicator is almost trivial. Using the integral mean value theorem, we have

‖div F(uh)‖L p = ‖div F(uh)− div F(u)︸ ︷︷ ︸
=0

‖L p ≤ C {‖eh‖L p + ‖∇eh‖L p} .

By now, we have no reliability results for nonlinear equations.
Let us now discuss the discretization of the residual. As a first guess, one might think of

using the finite volume discretization itself for the approximation of the residual. The main
problem in this approach is that a finite volume discretization leaves us with discontinuities
at the cell faces which have to be taken into account somehow in the calculation of the
residual.
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This can be done by a sufficiently weak regularity assumption onuh, namelyuh ∈
H−1(Ä). This assumption led us to aH−1-based residual estimator (see Section 5). A
rigorous analysis teaches us that the local residual is basically given by the “local total
variation” ofF(uh). This agrees perfectly with the classicalL1-error estimates for monotone
schemes originating in the works of Kruzhkov and Kuznetsow [14, 15]. The result is indeed
some sort of a local version of the TVB a priori, respectively. a posteriori, error estimates
developed during the past few years by Chanais-Hillairet [16] and Kr¨oner and Ohlberger
[17].

But the mathematics behind the approach of aH−1-based estimator seems to be limited
to piecewise constant, i.e., first order accurate, data. Therefore, estimators of that type do
not recognize that spatial linear data, for instance in an expansion fan, can be captured
perfectly Well by a second order scheme on a rather coarse mesh.

It is therefore natural to ask for more accurate residual estimators, i.e., residual esti-
mators that are of the same order of accuracy as the numerical scheme itself. But from
our analytical experienceH−1 feels uncomfortable for doing higher-order approximations,
since there is no analog of the approximation theory based on generalized Taylor series. We
therefore started to think about a regularization of the numerical data which maps the data
into a function space with more structure. We indeed found a rather cheap regularization
procedure, which maps the discontinous data, which lie clearly inL p into the spaceW1,p.
We think this regularization is justified for several reasons:

• In the classical theory of analytical solutions for hyperbolic conservation laws, dis-
continuities appear only on lower-dimensional manifolds; the solution is smooth almost
everywhere. Therefore, standard analysis techniques are allowed almost everywhere in the
physical domain.
• W1,p is dense inL p. Hence, for any discontinous piecewise polynomial, numerical

approximationuh, and any givenε > 0, there exists au∗h ∈ W1,p such that

‖uh − u∗h‖L p ≤ ε ≤ h2.

There is therefore aW1,p approximation of the numerical data which lies within the accuracy
of the numerical scheme.

5. H−1-BASED RESIDUAL ESTIMATOR

In [11] and [12] Sonar and Warnecke developed an error indicator within the framework
of piecewise constant functions, i.e., working immediately with the cell averages of finite
volume schemeswithout regularizing the data. On cellσi with neighboursσ j , j ∈ N (i ),
consider dataUh being constant on theσks and let|[F(Uh)⊗ ni j ]∂σi∩∂σ j| denote the jump
of the normal fluxesF(Uh)⊗ ni j across the edge∂σi ∩ ∂σ j . The quantity

ηh
σ i := max

j∈N (i )
{∣∣[F(Uh)⊗ ni j ]∂σi∩∂σ j

∣∣ · |σi ∩ σ j |
}

then measures the largest jump of the normal fluxes across the edges of the cellσi weighted
with the length of the edges. Considering larger patches6loc of cells we are able to compute

ηh
6loc

:=
( ∑
σi∈6loc

∣∣ηh
σi

∣∣2)1/2

,
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and it was shown in [11] that there are constants C, C′ > 0 independent ofh such that

C′ηh
6loc
≤ ‖div F(uh)‖H−1(6loc) ≤ Cηh

6loc
,

i.e.,ηh
6loc

is an estimator for theH−1-norm of the residual. It is this finite difference estimator
that will be used for comparison purposes in the sequel.

6. DISCRETE REGULARIZATION OF THE DATA

The finite volume method described above leaves us with piecewise constant data on each
control volume. LetS1

h(Ä) denote the space of piecewise, linear, discontinuous functions
on the boxesσi , which form a partition of the computational domainÄ. We are interested
in the construction of adiscreteregularization operator

R : S1
h(Ä)→ W1,p(Ä) (2)

which does not destroy the accuracy of the data. Since theS1
h(Ä) data is second order

accurate in the absence of shocks,R has to satisfy the property (note thatS1
h(Ä) ⊂ L p(Ä))

‖uh − Ruh‖L p(Ä) = O(h2) (3)

in smooth regions.
We describe the construction of the discrete regularizationR only for the interior of the

physical domainÄ. For each control volumeσ , we choose a pointxσ in the interiorσ◦ of
σ . In the interior ofÄ there exists always a simplicial decomposition3h of Ä such that
eachxσ is a node of3h. We refer to that decomposition as thedual mesh. By evaluating
the ansatz functionsuσ in the pointsxσ , we obtain (d + 1)×m-dimensional information
on each cell of the dual mesh. This is exactly the required information for a linear inter-
polation on the simplex. The continuity of the interpolation can be seen as follows: The
interpolation of the data at a face of a simplex depends only on the data of the vertices of
the face; it is in fact the linear interpolation of the data on the face. The new interpolation is
a continuous second order interpolation of the point valuesu(xσ ). Therefore, the accuracy
condition (3) holds whenever there is no shock front separating the data points.

FIG. 2. Left: piecewise polynomial, discontinuous data. Right: piecewise polynomial, continuous data.
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FIG. 3. Solid line: givenS1
h data. Dashed line: dualH 1 data.

The one-dimensional case is almost self-explanatory. In Fig. 3 we always choosexσ to
be the midpoint ofσ ; we evaluate the linear function onσ in xσ and connect the obtained
point values by linear interpolation.

A particularly simple two-dimensional case is the box-grid. In the interior of the domain,
each vertex of the underlying triangulation lies in the interior of its box, and each box contains
exactly one vertex of the underlying triangulation. Therefore, the underlying triangulation
itself is adual mesh. We simply have to evaluate the ansatz functions in the vertices of the
underlying triangulation and calculate the linear interpolation on each triangle as shown in
Fig. 2.

For a cartesian, nonconforming grid, we again chosexσ as the centers of the cells. We
decompose the domain into triples of cells as shown in Fig. 4.

7. H1-BASED RESIDUAL ESTIMATOR

In this section we will derive formulae for the actual calculation of the norm of the
residual of the regularized datau∗h := Ruh.

FIG. 4. Left: Cartesian, nonconforming grid and dual mesh. Right: box-grid and dual mesh.
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Since our data lie inW1,p(Ä) for anyp, we are free to choose anyL p norm of the residual.
From a purely mathematical point of view, the most natural norm would beL1, sinceBV
(which is, so to speak, the subspace ofL1 with finite residual) is the space of solutions the
scalar equations are known to live in.

But theL1-norm is difficult to obtain numerically, since its calculation requires a sub-
division of the control volumes depending on the sign of the data. We therefore chose
the L2-norm of the residual instead. Since we are from now on only concerned with the
regularized data, we suppress the star and setuh = u∗h.

Our objective is a numerical algorithm for a second order approximation of the local
residual, i.e., we want to approximate the quantity

r (uh) := ‖div F(uh)‖L2(σ ).

This turns out to be a tedious, but straightforward task. We first give the formulae for a
d-dimensional system ofm equations, and afterwards we describe the case of a general
scalar system and the system of the Euler equations in two space dimensions.

Since the resulting formulae in the case of systems tend to be quite complicated, we
introduce the shorthand notations of the Jacobian∇ufk ∈ C1(Rm;Rm×m) of a flux function
and setxα := 5d

j=1x
α j

j .
We have

div F(uh) = ∂x1f1(uh)+ · · · + ∂xd fd(uh).

A Taylor expansion of one term in this sum reveals1

∂xj f j (uh(x)) = ∇uf j (uh(x)) · ∂xj uh︸ ︷︷ ︸
=const onσ

= {∇uf j · ∂xj uh
}
(uh(x0)+ (x− x0)∇xuh) =

{∇uf j · ∂xj uh
}
(u(x0))

(4)
+∇u

{∇uf j · ∂xj uh
}
(u(x0))· (x− x0) · ∇xuh

+O(‖x− x0‖22 ‖∇xuh‖22
)

Rewriting the latter formula in matrix notation and abbreviatingh = x− x0 andu0 = uh(x0)

we get

∂xj f j (uh(x)) =


∑m

k=1 ∂uk f j,1(u)|u=u0 · ∂xj uh,k
...∑m

k=1 ∂uk f j,m(u)|u=u0 · ∂xj uh,k



+


∑m

`=1

[(∑d
k=1 ∂xkuh,` · hk

)
·
(∑m

k=1 ∂u`∂uk f j,1(u)|u=u0 · ∂xj uh,k

)]
...∑m

`=1

[(∑d
k=1 ∂xkuh,` · hk

)
·
(∑m

k=1 ∂u`∂uk f j,m(u)|u=u0 · ∂xj uh,k

)]


+ O(‖h‖2).

1 Note that due to the linearity of the ansatz functionuh, we have∇xuh(x) = const=: ∇xuh.
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Using these formulae, we have a second order approximation of the components of the
residual given by the linear polynomial

d∑
j=1

∂xj f j,k(uh) =
∑
|α|≤1

aα,k hα +O(‖h‖22)
with multiindexα = (α1, . . . , αd). We obtain the L2-norm of the estimator straightforwardly
as

∫
σ

∑
|α|≤1

aα,k hα

2

dh =
∑
|α+β|≤2

aα,k aβ,k Iα+β with Iα :=
∫
σ

hα dh. (5)

Note that onlyaα depends on the data; the integralsIα may be precomputed.
The remaining task is to calculate theaα, which depend on the differential operator as

well as the actual data. Theaα consist of the derivatives of the flux function

∇uf j (uh(x0)) · ∂xj uh(x0) and ∇u
{∇uf j (uh(x0)) · ∂xj uh

} · ∂xkuh

as computed in the Taylor expansion above. In many papers on a posteriori error estimation,
the importance of the scaling factor of the adaption indicator is emphasized [8, 11]. It has
been pointed out that the scaling has to decrease at least linearly with the diameter of theh
of a control volume. This is a first criterion for our residual estimator. Luckily, this criterion
is consistent with that requirement, since the componentsaα ∈ O(1) are scaled withh|α|+1.

As discussed above, the residual estimator should be of the same order of accuracy as the
numerical scheme. Since we have third and even fourth order accurate weighted essentially
nonoscillatory (WENO) schemes [1, 3], it would be desirable to have residual estimators
of the same accuracy. But there are a number of difficulties here.

• It is the authors’ belief that one has to leave the framework of piecewise polynomials
in order to achieve more regularity thanW1,p. One could of course think of a radial-basis-
function ansatz or something similar; but this would not fit into a finite volume framework
as nicely as the second order approach described here.
• A higher order polynomial ansatz seems to increase the noise in the numerical residual

distribution. This seems to be due to the fact that the calculation of the leading coefficients
of a higher order polynomial is significantly more ill-conditioned than in the linear case
(a similar effect had been observed for the third order WENO recovery algorithm itself;
see 2).

7.1. The Two-Dimensional Scalar Equation

In order to illustrate the considerations above, we study a scalar equation in two space
dimensions,

div( f (uh), g(uh)) = 0.

For this equation, the formulae of the last section read as

div( f (uh), g(uh)) =
∑
|α|≤1

aαhα +O(‖h‖2)
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with

a(0,0) = ∂u f (uh) · ∂xuh + ∂ug(uh) · ∂yuh

a(1,0) = ∂uu f (uh) · (∂xuh)
2+ ∂uug(uh) · ∂xuh · ∂yuh

a(0,1) = ∂uu f (uh) · ∂xuh · ∂yuh + ∂uug(uh) · (∂yuh)
2.

Using these quantities, we may calculate the residual on simplexσ as

r (uh)
2 = a(0,0)|σ | + 2a(0,0) a(1,0)

∫
σ

h1 dh+ 2a(0,0) a(0,1)

∫
σ

h2 dh+ 2a(1,0) a(0,1)

×
∫
σ

h1h2 dh+ a2
(1,0)

∫
σ

h2
1 dh+ a2

(0,1)

∫
σ

h2
2 dh+O(‖h‖2)|σ |.

7.2. The Steady Two-Dimensional Euler Equations

According to our considerations above, we have to calculate first and second derivatives
of the flux tensor

F ◦ u :=


ρv1 ρv2

ρv2
1 + p ρv1v2

ρv1v2 ρv2
2 + p

ρHv1 ρHv2

 ,

whereu := (ρ, ρv1, ρv2, ρE)T . Since this is a tedious and error-prone task to do manually,
we computed the quantities necessary for our residual estimator with the computer algebra
packageMathematica. The results of the automated calculation are presented in Fig. 5.

8. NUMERICAL EXAMPLES

8.1. A Two-Dimensional Scalar Equation

Consider the scalar equation

ut + uux + uy = 0 onÄ := [0, 1]2

u(x, y, 0) = 0

u = 1− 2x on ∂Ä.

(6)

The steady solution of this equation can be constructed by the method of characteristics. The
characteristic equations are given bydy/ds= 1, dx/ds= u, or dy/dx = 1/u. Assuming
the given boundary data, the leftmost characteristicg1 is given byx, and the rightmost
characteristicg2 is given by 1− x (see Fig. 6. The characteristics meet at pointP, where
the shockg3 starts. The Rankine–Hugoniot condition yields the shock slopedx/dy= 0.

The data at pointQ lie on the characteristic connecting the pointP andPQ; therefore
u(P) = u(P Q) holds.

Knowing the analytical solution enables us to calculate the exact erroreh = u− uh;
therefore, we can compare the actual error and the residual estimator.



SECOND ORDER RESIDUAL ESTIMATOR 237

F
IG

.5
.

F
irs

ta
nd

se
co

nd
or

de
r

de
riv

at
iv

es
of

th
e

E
ul

er
op

er
at

or
.



238 THOMAS AND SONAR

FIG. 6. Construction of the steady solution.

We solved Eq. (6) with a second order finite volume solver on an isotropic grid with
about 6500 control volumes (see Fig. 7).

We compared the residual information of theH−1-residual estimator and the information
of the H1-residual estimator in Fig. 8.

Since it would be difficult to compute theL2-norm of the exact erroreh = u− uh numer-
ically, we projected the steady numerical solution onto a finer subgrid with roughly 50,000
control volumes. On this fine grid, we calculated a second order approximation of the local
L2-norm. The isolines of‖eh‖2 are plotted in Fig. 9. We observe that the influence of the
asymmetric geometry of the grid is enforced by a first order error indicator compared to
the true error, whereas the second order indicator seems to provide the correct amount of
geometry dependency.

8.2. The Steady Two-Dimensional Euler Equations

Consider the standard test case of flow around a NACA0012 profile with Mach number
Ma = 0.8 and angle of attackα = 1.25 on a box-grid with 8510 cells as shown in Fig. 10.
In Fig. 11, we compare the isolines of theH1-residual estimator with the isolines of the

FIG. 7. Computational mesh for the scalar example.



FIG. 8. Left: isolines ofH−1 residual estimator (min 0, delta 0.02). Right: isolines ofH 1-residual estimator
(min 0, delta 0.003).

FIG. 9. Isolines of the actual error of the numerical solution (min 0, delta 4e-6).

239
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FIG. 10. Grid and steady density distribution.

H−1-residual estimator for the steady state solution given on a fixed grid. We observe quite
different qualitative behaviour: theH1-residual estimator nearly vanishes in the smooth
regions of the flow, whereas theH−1-residual estimator produces noise in the smooth
regions proportional to the local gradients of the data.

8.3. Generalization to Unsteady Flow

As a final example we generalize our indicator to unsteady flows. Only the spatial residual
is computed, and the residual due to the time-stepping is not taken into account. The example
chosen is the forward-facing step of Woodward and Colella [18] where a Mach 3 flow starts
at timet = 0. Shown in Fig. 12 is the control volume grid and the corresponding density
distribution at timet = 8. The new indicator is not only capable of resolving the shocks but
also refines the contact discontinuity and the corner point.

FIG. 11. Left: isolines ofH−1-residual estimator. Right: isolines ofH 1-residual estimator.
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FIG. 12. Grid and density distribution att = 8.

CONCLUSIONS

We have presented a residual estimator based on a certain local smoothness assumption
regarding the numerical solutionuh. This assumption allows the use of Taylor series so
that the construction of a second order residual estimator is possible. The numerical results
showed, in fact, that the new residual indicator behaves very well in comparison with
an H−1-indicator with respect to discontinuous solutions. The lack of smoothness in the
construction ofH−1-indicators seems to lead necessarily to low order devices to indicate
regions of error. However, discontinuities take place on lower dimensional manifolds only,
so the assumption of low smoothness of the solution everywhere is much too restrictive.
On the other hand, a second order piecewise polynomial numerical solution can always be
projected onto the space of globalH1-functions while retaining the local order of accuracy
in the absence of shocks. Hence we get a higher order residual estimator which guarantees
a higher order of convergence in an underlying adaptation process.
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17. D. Kröner and M. Ohlberger, A posteriori error estimates for upwind finite volume schemes for nonlinear
conservation laws in multi dimensions,Math. Comput.69, 25 (2000).

18. P. Woodward and P. Colella, The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks,
J. Comput. Phys.54, 115 (1984).


	1. INTRODUCTION
	2. CONSERVATION LAWS
	3. THE FINITE VOLUME METHOD
	FIG. 1.

	4. RESIDUAL ESTIMATORS
	5. H-1-BASED RESIDUAL ESTIMATOR
	6. DISCRETE REGULARIZATION OF THE DATA
	FIG. 2.
	FIG. 3.
	FIG. 4.

	7. H1 -BASED RESIDUAL ESTIMATOR
	FIG. 5.

	8. NUMERICAL EXAMPLES
	FIG. 6.
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.
	FIG. 11.
	FIG. 12.

	CONCLUSIONS
	REFERENCES

