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We suggest a new technique for the numerical computation of the local residual
of nonlinear hyperbolic conservation laws. This techniques relies on a discrete reg-
ularization of the numerical datag 2001 Academic Press

1. INTRODUCTION

Dynamic adaptivity is a very efficient acceleration technique for the numerical solutit
of nonlinear hyperbolic conservation laws. Recent numerical investigations have shown
adaptivity is able to speed up computations considerably even when fast-moving phenon
dominate [5].

An important question in implementing this technique is what the criterion should |
for the refinement or coarsening of control volumes. For many linear equations there
so-calleda posteriori error estimatoravailable, which allow the control of the local error.

Error control is concerned with the control of the quantity

€ '=Un— U,

whereu is the exact solution of a problethu = 0 anduy, denotes a numerical solution. The
guantityh refers to a typical length scale in the grid employed for the numerical methc
If the operatorL is linear, thenC e, = Lu, — Lu = Lun =: ry, Which connects the error
with the computableesidual r,. If additionally £ is invertible we immediately get control
on the error by means of the residual through

& = L',‘lrh.

Several authors therefore have employed the residual in their constructions of a pos
ori refinement indicators; see for example [7—9]. For nonlinear conservation laws, thit
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are more complicated. Error estimators exist only for very special cases [13]. Houst
McKenzie, Sili, and Warnecke [6] were the first to provide reliable and efficient a post:
riori error indicators for general Petrov—Galerkin methods for Friedrichs systems. In [1
the authors carried over this theory to finite volume approximations of the Euler equatic
of gas dynamics via a process of symmetrization and linearization. However, reliable :
efficient a posteriori error indicators for general nonlinear hyperbolic systems of equatic
are still not available. Because of this, purely heuristic functionals are often used. A mi
mathematically based approach is to useltival residualas a refinement indicator. An
open question is how to make an efficientand accurate numerical approximation of the re
ual. One reason for this problem lies in the mathematically difficult structure of the ans:
space.

In this paper, we suggest a numerically efficient technique for the approximation of t
local residual. Our approach relies on a regularization of the numerical data, which d
not destroy the accuracy. The obtained regularity of the data enables us to employ stan
techniques of analysis for the approximation of the local residual.

2. CONSERVATION LAWS

We consider a system a@h conservation laws on a physical doma&nc RY. For a
vector-valued, suitably smooth function

u:Q— R™
a (steady) conservation law is defined throudluatensorF = (f1, ..., fq) : D C R™ —
Rmxd by
m
divFu) =) ay fj(w) =0, 1)
j=1

where thef; are theflux functions In this paper, we will generally assume thak
[C2(D; RM]Y. Since physically relevant solutions of conservation laws are known to e
hibit discontinuities, we defingveak solutionof the conservation law (1). A function
u € [L*°(2)]™ is aweak solutiorof (1) iff the equation

f F(uy®@nds=0
do

holds on every bounded set (control volumey RY, where
Fon:={f-ni+---+fg-nq)
andn denotes the unit outer normal vectomat.
We are particularly interested in the solution of the Euler equations of gas dynam
governing inviscid, compressible, steady flow. These equations describe the conserve

of mass, momentum, and specific total energy; therefore we have the conserved quan

u:=(p, pv, pE)" : @ — R™,
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m=d + 2, wherep is the densityy is the velocity, ang E is the specific total energy. The
flux functions have the form

- - T,
fi(u) := (pui, pvrvi +81p, ..., pvavi +84p, pHvi) ., i=1,...,d,

whereH = E + % is thetotal enthalpyands;. denotes the Kronecker delta. Since we have
2+ d equations for 3+ d unknowns we have to introduce an additional equation of sta
to close the system. In the case of dry air considered as an ideal gas, the equation of

p = K ,0 2 ’

wherex = 1.4 denotes the ratio of specific heats.

3. THE FINITE VOLUME METHOD

We give only a short overview of the class of nhumerical schemes which we empl
Starting from the definition of weak solutions

% F(u)® nds=0,
doj

we takeo; to be the boxes (dual grid) of a triangulation. The boundary of each box consi
of straight line segments connecting the edge midpoints of edges emanating from r
i with the barycentres of the triangles having nada common; see Fig. 1. Adding an
auxiliary time derivative (either to drive to the steady state or to compute unsteady flc
and denoting the indices of neighbouring boxes;dby A/ (i) we get

d 2
dt/mdez_?gm F(uy® nds= — Z Z/k F(u) ® nf ds.

jeN(i) k=1 “tj

Denoting byu := ﬁfmudx the average ofi overg;, employing a Gaussian quadrature
rule withng points at one segment and introducing an approximate Riemann sbthen

FIG. 1. Boundary of two boxes.
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leads to
A5 L QLIRS U O (50 1)
at |(t)—_m 27 Wy ( i(Xij(Su),t), j(Xij(S;)’t)’nij)
jeN(i) k=1 v=1

Here,U; is a recovery polynomial o#; andxikj (s,) denote points 0|‘|‘<j with respect to a
parametrisation dfS with se [—1, 1].

The recovery polynomials are computed in a weighted essentially nonoscillatory man
as described in [1]. With each control volume we associate a stencil containing as m
neighbouring control volumes as are necessary for polynomial recovery of a fixed deg
Then arecovery polynomial is computed on each stenkilor each conservative variable,
and its oscillation behaviour is measured by means of an oscillation indicator, in our ca

Ol(pik> = HVpikHLZ(oi)'

According to the oscillation indicator, a weighf is defined for thek th recovery polyno-
mial ono; so thatw! is large if Ok p¥) is small and vice versa. Additionally, we require
>k ok = 1. For details concerning the construction of the weights see [1]. The final recove
polynomial one; is then defined as

Ui = Zwlkplk
K

for each of the conservative variables. The resulting schemes for linear and quadratic re
ery polynomials are robust, accurate codes which show fairly good convergence behav
to the steady state. Time-stepping is achieved by means of a TVB—Runge—Kutta schel

4. RESIDUAL ESTIMATORS

As we mentioned in the Introduction, we are going to use the residual as an a postel
error indicator. Let us first summarize some basic facts about this approach.

Ideally, an error indicator should neither underestimate nor overestimate the “true err
&, := U — uy. In the literature, the first requirement is often referred toediability and
the second one adficiency By now, reliable error estimates (for nonlinear equations) ar
available only for scalar equations (see 17). These error estimates, while very interest
are by no means efficient. In contrast, the efficiency of a residual estimator regarded a
error indicator is almost trivial. Using the integral mean value theorem, we have

lIdiv F(un)llLe = [IdivF(un) — divF) [lLe < C{llenllLe + I VenliLe} .
———

=0

By now, we have no reliability results for nonlinear equations.

Let us now discuss the discretization of the residual. As a first guess, one might thin}
using the finite volume discretization itself for the approximation of the residual. The me
problem in this approach is that a finite volume discretization leaves us with discontinuit
at the cell faces which have to be taken into account somehow in the calculation of
residual.
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This can be done by a sufficiently weak regularity assumptiorugnnamelyuy,
H~1(Q). This assumption led us to ld~!-based residual estimator (see Section 5). A
rigorous analysis teaches us that the local residual is basically given by the “local tc
variation” of F(up). This agrees perfectly with the classitdterror estimates for monotone
schemes originating in the works of Kruzhkov and Kuznetsow [14, 15]. The result is inde
some sort of a local version of the TVB a priori, respectively. a posteriori, error estima
developed during the past few years by Chanais-Hillairet [16] arwh&rand Ohlberger
[17].

But the mathematics behind the approach éf a-based estimator seems to be limited
to piecewise constant, i.e., first order accurate, data. Therefore, estimators of that typ
not recognize that spatial linear data, for instance in an expansion fan, can be capt
perfectly Well by a second order scheme on a rather coarse mesh.

It is therefore natural to ask for more accurate residual estimators, i.e., residual ¢
mators that are of the same order of accuracy as the numerical scheme itself. But f
our analytical experiencd —* feels uncomfortable for doing higher-order approximations
since there is no analog of the approximation theory based on generalized Taylor series
therefore started to think about a regularization of the numerical data which maps the
into a function space with more structure. We indeed found a rather cheap regulariza
procedure, which maps the discontinous data, which lie clearlyPimto the spacéVP.
We think this regularization is justified for several reasons:

e In the classical theory of analytical solutions for hyperbolic conservation laws, di
continuities appear only on lower-dimensional manifolds; the solution is smooth alm
everywhere. Therefore, standard analysis techniques are allowed almost everywhere i
physical domain.

e WLP is dense inLP. Hence, for any discontinous piecewise polynomial, numerice
approximatiorup, and any giver > 0, there exists &;, € WP such that

lup — Uil < & < h%
Thereis therefore? P approximation of the numerical data which lies within the accurac
of the numerical scheme.

5. H~1-BASED RESIDUAL ESTIMATOR

In [11] and [12] Sonar and Warnecke developed an error indicator within the framewc
of piecewise constant functions, i.e., working immediately with the cell averages of fin
volume schemewithoutregularizing the data. On cel{ with neighbourss;, j € N(i),
consider datdJ, being constant on thes and let[F(Un) ® Nijlssnio;| denote the jump
of the normal fluxe$(Un) ® n;; across the edgéo; N doj. The quantity

nhy = jmax {|[F(Un) @ nijlagnae, | - loi N ol }

then measures the largest jump of the normal fluxes across the edges of thevegijhted
with the length of the edges. Considering larger patéhgsof cells we are able to compute

1/2
r’gloc = ( Z ’ngi‘2> ’

0 €Zioc



232 THOMAS AND SONAR

and it was shown in [11] that there are constants C; © independent df such that
Cn,,. < IdivVF(UR) -1z < Crl,..

i.e.,ngm is an estimator for thel ~1-norm of the residual. Itis this finite difference estimator
that will be used for comparison purposes in the sequel.

6. DISCRETE REGULARIZATION OF THE DATA

The finite volume method described above leaves us with piecewise constant data on:
control volume. LetSt(2) denote the space of piecewise, linear, discontinuous functior
on the boxew;, which form a partition of the computational domain We are interested
in the construction of discreteregularization operator

R: SHQ) - WHP(Q) (2)

which does not destroy the accuracy of the data. SinceSth®) data is second order
accurate in the absence of shocRd)as to satisfy the property (note tHfg(Q) c LP())

lun — Run[lLe(R2) = O(h?) (3)

in smooth regions.

We describe the construction of the discrete regulariza®ionly for the interior of the
physical domairf2. For each control volume, we choose a point, in the interiors of
o. In the interior ofQ2 there exists always a simplicial decompositiap of Q such that
eachx, is a node ofA,. We refer to that decomposition as ttieal meshBy evaluating
the ansatz functions, in the pointsx,, we obtain § + 1) x m-dimensional information
on each cell of the dual mesh. This is exactly the required information for a linear intt
polation on the simplex. The continuity of the interpolation can be seen as follows: T
interpolation of the data at a face of a simplex depends only on the data of the vertice:
the face; it is in fact the linear interpolation of the data on the face. The new interpolatior
a continuous second order interpolation of the point valu®&s). Therefore, the accuracy
condition (3) holds whenever there is no shock front separating the data points.

FIG. 2. Left: piecewise polynomial, discontinuous data. Right: piecewise polynomial, continuous data.
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FIG. 3. Solid line: givenS} data. Dashed line: dual® data.

The one-dimensional case is almost self-explanatory. In Fig. 3 we always chotse
be the midpoint ofr; we evaluate the linear function @nin x, and connect the obtained
point values by linear interpolation.

A particularly simple two-dimensional case is the box-grid. In the interior of the domai
each vertex of the underlying triangulation lies in the interior of its box, and each box conta
exactly one vertex of the underlying triangulation. Therefore, the underlying triangulati
itself is adual meshWe simply have to evaluate the ansatz functions in the vertices of tl
underlying triangulation and calculate the linear interpolation on each triangle as show
Fig. 2.

For a cartesian, nonconforming grid, we again chqsas the centers of the cells. We
decompose the domain into triples of cells as shown in Fig. 4.

7. H-BASED RESIDUAL ESTIMATOR

In this section we will derive formulae for the actual calculation of the norm of th
residual of the regularized daté :== Ru.

FIG. 4. Left: Cartesian, nonconforming grid and dual mesh. Right: box-grid and dual mesh.
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Since our data lie ikv* P(Q) for anyp, we are free to choose ahy norm of the residual.
From a purely mathematical point of view, the most natural norm would¥sinceBV

(which is, so to speak, the subspacd dfwith finite residual) is the space of solutions the

scalar equations are known to live in.

But the L'-norm is difficult to obtain numerically, since its calculation requires a sub
division of the control volumes depending on the sign of the data. We therefore ch
the L?-norm of the residual instead. Since we are from now on only concerned with t

regularized data, we suppress the star and;set uy;.

Our objective is a numerical algorithm for a second order approximation of the loc

residual, i.e., we want to approximate the quantity

r(up) := [ldivF(un)llL2(0)-

This turns out to be a tedious, but straightforward task. We first give the formulae fol
d-dimensional system ah equations, and afterwards we describe the case of a gene

scalar system and the system of the Euler equations in two space dimensions.

Since the resulting formulae in the case of systems tend to be quite complicated,

introduce the shorthand notations of the JacoBigiy € C1(R™; R™™) of a flux function
aj

and sex* = M9_,x".
We have

div F(un) = 8y, f1(Un) + - - - + 3%, fa(Un).
A Taylor expansion of one term in this sum revéals

A, fj (Un (X)) = Vufj(Un(X)) - 0xUn
=const ono

= {Vufj - 8yUn } (Un(X0) + (X — X0) VxUn) = {Vufj - 3y un } (U(X0))
+ Vu {Vufj - 9y Un} (U(X0)): (X — Xo) - VxUn
+O(lIx = Xoll3 [ VxUnl13)

(4)

Rewriting the latter formula in matrix notation and abbreviating x — X andug = un (Xg)
we get

ZT:l Au fi,l(u)|u:uo : axJ Unh k
3% Fj (Un () = :
Zrknzl 8Uk fj,m(u)|u=u0 : axj Uh. k

> [(Zﬂzl Ox Un,¢ - hk) . (Z{le Au, Oy Fj.2(U)u=y, - Ox; Uh,k)]
+ .

221:1 {(Z(kal Ox, Un,¢ - hk) : <Z.km:1 0y, Oy, fj,m(u)|u=u0 : 8Xjuh,k)}
+O(lhl?).

1 Note that due to the linearity of the ansatz functignwe havev,u,(x) = const=: V,u.
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Using these formulae, we have a second order approximation of the components of
residual given by the linear polynomial

d
Zaxi fj,k(uh) = Z agkh* + O(thl%)

j=1 la|<1

with multiindexa = (a1, . . ., ag). We obtain the B-norm of the estimator straightforwardly
as

2

/ Y awh® | dh= Y awkasklars  with I, :=/h“dh. (5)

la|=1 lo+-B1<2

Note that onlya, depends on the data; the integriJsnay be precomputed.
The remaining task is to calculate thg, which depend on the differential operator as
well as the actual data. Tleg consist of the derivatives of the flux function

Vufj (Un(X0)) - O Un(Xo)  and  Vu{Vufj(Un(X0)) - dx,Un} - dx Un

as computed in the Taylor expansion above. In many papers on a posteriori error estima
the importance of the scaling factor of the adaption indicator is emphasized [8, 11]. It |
been pointed out that the scaling has to decrease at least linearly with the diametdr of 1
of a control volume. This is afirst criterion for our residual estimator. Luckily, this criterio
is consistent with that requirement, since the comporgnts O (1) are scaled with/+1,

As discussed above, the residual estimator should be of the same order of accuracy ¢
numerical scheme. Since we have third and even fourth order accurate weighted essen
nonoscillatory (WENO) schemes [1, 3], it would be desirable to have residual estimat
of the same accuracy. But there are a number of difficulties here.

e Itis the authors’ belief that one has to leave the framework of piecewise polynomi
in order to achieve more regularity th&P. One could of course think of a radial-basis-
function ansatz or something similar; but this would not fit into a finite volume framewo
as nicely as the second order approach described here.

e Ahigher order polynomial ansatz seems to increase the noise in the numerical resi
distribution. This seems to be due to the fact that the calculation of the leading coefficie
of a higher order polynomial is significantly more ill-conditioned than in the linear cas
(a similar effect had been observed for the third order WENO recovery algorithm itse
see 2).

7.1. The Two-Dimensional Scalar Equation

In order to illustrate the considerations above, we study a scalar equation in two sf
dimensions,

div(f (un), g(un)) = 0.
For this equation, the formulae of the last section read as

div(f(un), g(un) = Y a.h* + O(llhll2)

le|=1
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with

a0,00 = du T (Un) - dxUn + 3ug(Un) - dyUn
a(l,O) = 8uu f (Uh) . (8xuh)2 + 8uug(uh) : a><Uh . 8yUh
a0.1) = duu  (Un) - BxUn - dyUn + duuG(Un) - (ByUn)?.

Using these quantities, we may calculate the residual on sinapéex

r(Un)? = &o,0)lo | + 20,0 &1.0) / hidh + 2a,,0) a0 / hz2dh + 2a1,0) &0,1

x /hlhgdh+a(zlyo) /hfdh—ka(zoql) /hgdh+0(||h||2)|a|.

7.2. The Steady Two-Dimensional Euler Equations

According to our considerations above, we have to calculate first and second derivat
of the flux tensor

PV P2
pvZ+p PUIV2
pvivy  pU3+p
pHv1 pHv,

Fou:=

3

whereu := (p, pv1, pv2, pE)T. Since this is a tedious and error-prone task to do manuall
we computed the quantities necessary for our residual estimator with the computer alg
packageMathematicaThe results of the automated calculation are presented in Fig. 5.

8. NUMERICAL EXAMPLES

8.1. A Two-Dimensional Scalar Equation

Consider the scalar equation

Ut + Uy +uy =0 onQ := [0, 1J?
u(x,y,0) =0 (6)
u=1-2x o0nog.

The steady solution of this equation can be constructed by the method of characteristics.
characteristic equations are givendy/ds = 1, dx/ds = u, ordy/dx = 1/u. Assuming
the given boundary data, the leftmost characterigtiés given byx, and the rightmost
characteristi@;, is given by 1— x (see Fig. 6. The characteristics meet at p&inivhere
the shockgs starts. The Rankine—Hugoniot condition yields the shock stbyely = 0.

The data at poin@ lie on the characteristic connecting the pdhandPQ; therefore
u(P) = u(P Q) holds.

Knowing the analytical solution enables us to calculate the exact efreru — up;
therefore, we can compare the actual error and the residual estimator.
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FIG. 6. Construction of the steady solution.

We solved Eq. (6) with a second order finite volume solver on an isotropic grid wif
about 6500 control volumes (see Fig. 7).

We compared the residual information of tHe'*-residual estimator and the information
of the H!-residual estimator in Fig. 8.

Since it would be difficult to compute tHe?-norm of the exact erra, = u — u, numer-
ically, we projected the steady numerical solution onto a finer subgrid with roughly 50,0
control volumes. On this fine grid, we calculated a second order approximation of the lo
L2-norm. The isolines ofl&,|» are plotted in Fig. 9. We observe that the influence of the
asymmetric geometry of the grid is enforced by a first order error indicator compared
the true error, whereas the second order indicator seems to provide the correct amou
geometry dependency.

8.2. The Steady Two-Dimensional Euler Equations

Consider the standard test case of flow around a NACA0012 profile with Mach numlt
Ma = 0.8 and angle of attack = 1.25 on a box-grid with 8510 cells as shown in Fig. 10.
In Fig. 11, we compare the isolines of tht!-residual estimator with the isolines of the

FIG. 7. Computational mesh for the scalar example.



FIG. 8. Left: isolines ofH ! residual estimator (min 0, delta 0.02). Right: isolined-Btresidual estimator
(min O, delta 0.003).

FIG. 9. Isolines of the actual error of the numerical solution (min 0, delta 4e-6).

239
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FIG. 10. Grid and steady density distribution.

H~*-residual estimator for the steady state solution given on a fixed grid. We observe q
different qualitative behaviour: thel!-residual estimator nearly vanishes in the smoott
regions of the flow, whereas thid ~*-residual estimator produces noise in the smoott
regions proportional to the local gradients of the data.

8.3. Generalization to Unsteady Flow

As afinal example we generalize our indicator to unsteady flows. Only the spatial resid
is computed, and the residual due to the time-stepping is not taken into account. The exal
chosenis the forward-facing step of Woodward and Colella [18] where a Mach 3 flow sta
at timet = 0. Shown in Fig. 12 is the control volume grid and the corresponding densi
distribution at time = 8. The new indicator is not only capable of resolving the shocks bt
also refines the contact discontinuity and the corner point.

N

FIG. 11. Left: isolines ofH~*-residual estimator. Right: isolines &f!-residual estimator.
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FIG. 12. Grid and density distribution at= 8.

CONCLUSIONS

We have presented a residual estimator based on a certain local smoothness assun
regarding the numerical solutiam,. This assumption allows the use of Taylor series s
that the construction of a second order residual estimator is possible. The numerical re:
showed, in fact, that the new residual indicator behaves very well in comparison w
an H~*-indicator with respect to discontinuous solutions. The lack of smoothness in t
construction ofH ~!-indicators seems to lead necessarily to low order devices to indice
regions of error. However, discontinuities take place on lower dimensional manifolds or
so the assumption of low smoothness of the solution everywhere is much too restrict
On the other hand, a second order piecewise polynomial numerical solution can alway
projected onto the space of glodat-functions while retaining the local order of accuracy
in the absence of shocks. Hence we get a higher order residual estimator which guaral
a higher order of convergence in an underlying adaptation process.

REFERENCES

1. O.Friedrich, Weighted essentially nonoscillatory schemes for the interpolation of mean values on unstruct
grids,J. Comput. Physl44, 194 (1998).

2. O. FriedrichGewichtete Wesentlich Nicht-Oszillierende Verfahren auf Unstrukturierten G{@érb. thesis
Universitit Hamburg, 1999).

3. C. Hu and C.-W. Shu, Weighted essentially nonoscillatory schemes on triangular nie€b@sput. Phys.
150,97 (1999).

4. T. Sonar, On the construction of essentially nonoscillatory finite volume approximations to hyperbolic ct
servation laws on general triangulations: polynomial recovery, accuracy, and stencil se@stigrut. Meth.
Appl. Mech. Eng140, 157 (1997).



242 THOMAS AND SONAR

5.

10.

11.

12.

13.

14.
15.

16.

17.

18.

D. HempelRekonstruktionsverfahren auf Unstrukturierten Gittern zur Numerischen Simulation von Erhe
tungsprinzipienPh.D. thesis (Universat' Hamburg, 1999).

. P. Houston, J. A. Mackenzie, Eul§'and G. Warnecke, A posteriori error analysis for numerical approxima-

tions of Friedrichs systemBlumer. Math82, 433 (1999).

. C. Johnson and A. Szepessy, Adaptive finite element methods for conservation laws based on a post

error estimatescommun. Pure Appl. Matid8, 199 (1995).

. T. Sonar, Strong and weak norm refinement indicators based on the finite element residual for compres

flow computation)mpact Comput. Sci. Eng, 111 (1993).

. T. Sonar, V. Hannemann, and D. Hempel, Dynamic adaptivity and residual control in unsteady compress

flow computationMath. Comput. ModeR0, 201 (1994).

T. Sonar and E.#i; A dual graph-norm refinement indicator for finite volume approximations of the Eule
equationsNumer. Math78, 619 (1998).

T. Sonar and G. Warnecken Finite Difference Error Indication for Adaptive Approximations of Conservation
Laws 2nd ed. (Hamburger Beige zur Angewandten Mathematik, Univeasitfamburg, 1997).

T. Sonar and G. Warnecke, On a posteriori error indication based on finite differences in triangular gr
Z. Angew. Math. Meclv.8, Supp. 1, 47 (1998).

E. Tadmor, Local error estimates for discontinuous solutions of nonlinear hyperbolic equ&titkis,).
Numer. Anal28, 891 (1991).

S. Kruzhkov, First-order quasilinear equations in several independent varidbte§bh.123 217 (1970).

N. Kuznetsow, Accuracy of some approximate methods for computing the weak solutions of a first-or
quasilinear equatioJSSR Comput. Math. and Math. Phg$§, 105 (1976).

C. Chanais-Hillairefinite Volume Schemes for a Nonlinear Hyperbolic Equation. Convergence Towards tl
Entropy Solution and Error Estimat@ech. Rep., UMPA, E.N.S. Lyon (1997).

D. Kréner and M. Ohlberger, A posteriori error estimates for upwind finite volume schemes for nonline
conservation laws in multi dimensioridath. Comput69, 25 (2000).

P. Woodward and P. Colella, The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocl
J. Comput. Phys4, 115 (1984).



	1. INTRODUCTION
	2. CONSERVATION LAWS
	3. THE FINITE VOLUME METHOD
	FIG. 1.

	4. RESIDUAL ESTIMATORS
	5. H-1-BASED RESIDUAL ESTIMATOR
	6. DISCRETE REGULARIZATION OF THE DATA
	FIG. 2.
	FIG. 3.
	FIG. 4.

	7. H1 -BASED RESIDUAL ESTIMATOR
	FIG. 5.

	8. NUMERICAL EXAMPLES
	FIG. 6.
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.
	FIG. 11.
	FIG. 12.

	CONCLUSIONS
	REFERENCES

